The generator matrix

 1  0  1  1  1 X^2+X  1  1 X^2  1  1 X^2  1  1  X  X  1  1  1 X^2+X  1  1  1 X^2+X  1  0  1 X^2  1  1  1  0  1  0  1  1  X X^2+X  0  0 X^2  X  X  1  1  X  1  1  1  0 X^2  0  1  1 X^2+X  1  1 X^2+X  1  X  1 X^2
 0  1  1 X^2+X X+1  1 X^2+1 X^2  1 X^2  1  1  X X^2+X+1  1  1  X X^2+1 X+1  1  0 X^2+X  1  1 X^2+X+1  1 X+1  1 X^2  X  0  1 X^2+X  0 X^2+X+1  1  1  1  1  X  1  1  1  0 X^2+X  1 X^2  X X+1  1  1  1 X^2+1 X^2+X+1  1 X^2+1 X^2+X  1  0  0 X^2  1
 0  0  X  0 X^2  0 X^2  X  X X^2+X X^2+X X^2+X  X  X  0  X X^2+X  0  0 X^2+X X^2 X^2 X^2+X X^2 X^2+X X^2 X^2+X X^2 X^2 X^2 X^2+X X^2+X X^2+X  X X^2 X^2 X^2+X X^2  X X^2 X^2  X X^2 X^2 X^2 X^2+X X^2+X X^2+X X^2 X^2  X  0 X^2 X^2+X  X  X  0  X  X X^2 X^2 X^2
 0  0  0 X^2 X^2 X^2  0 X^2 X^2  0 X^2  0  0 X^2  0  0 X^2 X^2  0 X^2  0 X^2  0 X^2 X^2  0  0 X^2 X^2  0  0  0 X^2 X^2 X^2  0 X^2  0 X^2 X^2  0 X^2 X^2 X^2  0  0 X^2  0  0 X^2  0 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2  0  0

generates a code of length 62 over Z2[X]/(X^3) who�s minimum homogenous weight is 59.

Homogenous weight enumerator: w(x)=1x^0+70x^59+94x^60+100x^61+94x^62+28x^63+42x^64+20x^65+16x^66+30x^67+4x^68+6x^69+1x^70+2x^76+2x^77+1x^80+1x^86

The gray image is a linear code over GF(2) with n=248, k=9 and d=118.
This code was found by Heurico 1.16 in 0.173 seconds.